High temperature oxidation protection of multi-phase Mo-containing TiAl-alloys by the fluorine effect

A. Donchev, R. Pflumm, S. Mayer, H. Clemens, M. Schütze

Materials Research Society Symposium Proceedings 1516, Cambridge University Press, Cambridge/UK (2013), 95-100, DOI: 10.1557/opl.2012.1563

Intermetallic titanium aluminides are potential materials for application in high temperature components. In particular, alloys solidifying via the β-phase are of great interest because they possess a significant volume fraction of the disordered body-centered cubic β-phase at elevated temperatures ensuring good processing characteristics during hot-working. Nevertheless, their practical use at temperatures as high as 800°C requires improvements of the oxidation resistance. This paper reports on the fluorine effect on a multi-phase TiAl-alloy in the cast and hot-isostatically pressed condition at 800°C in air. The behavior of the so-called TNM material (Ti-43.5Al-4Nb-1Mo-0.1B, in at %) was compared with that of two other TiAl-alloys which are Nb-free and contain different amounts of Mo (3 and 7 at%, respectively). The oxidation resistance of the fluorine treated samples was significantly improved compared to the untreated samples. After fluorine treatment all alloys exhibit slow alumina kinetics indicating a positive fluorine effect. Results of isothermal and thermocyclic oxidation tests at 800°C in air are presented and discussed in the view of composition and microstructure of the TiAl-alloys investigated, along with the impact of the fluorine effect on the oxidation resistance of these materials.

Link zur Publikation

zurück
Jetzt Stifter werden